		ANO 2021	
Disciplina:	Matemática	Número de questões:	40
Duração:	120 minutos	Opções por questão:	4

INSTRUÇÕES

- Preencha as suas respostas na **FOLHA DE RESPOSTAS** que lhe foi atribuída no inicio deste exame. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- Na **FOLHA DE RESPOSTAS**, assinale a letra que corresponde a alternativa correcta, colocando uma cruz "×" sobre a circunferência "○" correspondente.

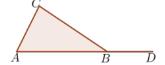
Se $A = \{x : x \in \mathbb{N}, x \in \mathbb{N}\}$	divisor de 12 } e $B =$	$\{x: x \in \mathbb{N}, x \text{ \'e divisor}\}$	de 18 }. Então, $A \cap B$ é:
A. Ø	B. $\{1, 2, 3, 6\}$	C. $\{4, 12\}$	D. $\{1, 2, 3, 4, 6, 9, 12, 18\}$
O perímetro de uma	circunferência de ra	iio $5cm$ é aproximad	o a:
A. 30cm	B. 3,14 <i>cm</i>	C. 31,4 <i>cm</i>	D. 40 <i>cm</i>
O conjunto das solu	ıções da equação 6 –	3x = 3 é:	
A. Ø	B. {1;3}	C. $\{-1; -3\}$	D. Nenhuma das opções anteriores.
Resolvendo a inequa	ação $ x-7 <-1$, obto	ém-se:	
A. $x > 7$	В. ∅	C. $x < 6$	D. ℝ
Racionalizando a ex	pressão $\frac{3}{\sqrt{3}+\sqrt{2}}$, res	sulta:	
A. $3(\sqrt{3} - \sqrt{2})$	B. $3(\sqrt{3} + \sqrt{2})$	C. 1	D. $\frac{\sqrt{3} + \sqrt{2}}{3}$
A solução para o sis	tema de inequações	$-3 \le 3 - 2x < 9, x \in \mathbb{R}$	R, é:
A. [-3;3]	B.] – 3;3[C. $] - 3; 3]$	D. $[0;3]$
Simplifique a expres	ssão $\frac{c^2 + 6c + 9}{c^2 - 9}$:		
A. 1	B. $\frac{c+3}{c-3}$	$C. \frac{c-3}{c+3}$	D. $\frac{c+1}{c-1}$
Se $z_1 = 6 + 3i$ e $z_2 =$	$3-i$, onde $i=\sqrt{-1}$, ϵ	então $\frac{z_1}{z_2}$ é igual a:	
			D. $\frac{3}{2} + \frac{3}{2}i$
	A. \emptyset O perímetro de uma A. $30cm$ O conjunto das solu A. \emptyset Resolvendo a inequa A. $x > 7$ Racionalizando a ex A. $3(\sqrt{3} - \sqrt{2})$ A solução para o sis A. $[-3;3]$ Simplifique a expres A. 1	A. \emptyset B. $\{1,2,3,6\}$ O perímetro de uma circunferência de ra A. $30cm$ B. $3,14cm$ O conjunto das soluções da equação $ 6-4$ A. \emptyset B. $\{1;3\}$ Resolvendo a inequação $ x-7 <-1$, obto A. $x>7$ B. \emptyset Racionalizando a expressão $\frac{3}{\sqrt{3}+\sqrt{2}}$, resolvendo para o sistema de inequações A. $[-3;3]$ B. $[-3;3]$ Simplifique a expressão $\frac{c^2+6c+9}{c^2-9}$: A. $[-3;3]$ B. $[-3;3]$ Simplifique a expressão $[-3;3]$ B. $[-3;3]$ Simplifique a expressão $[-3;3]$ B. $[-3;3]$	O perímetro de uma circunferência de raio $5cm$ é aproximad A. $30cm$ B. $3,14cm$ C. $31,4cm$ O conjunto das soluções da equação $ 6-3x =3$ é: A. \emptyset B. $\{1;3\}$ C. $\{-1;-3\}$ Resolvendo a inequação $ x-7 <-1$, obtém-se: A. $x>7$ B. \emptyset C. $x<6$ Racionalizando a expressão $\frac{3}{\sqrt{3}+\sqrt{2}}$, resulta: A. $3(\sqrt{3}-\sqrt{2})$ B. $3(\sqrt{3}+\sqrt{2})$ C. 1 A solução para o sistema de inequações $-3 \le 3-2x < 9, x \in A$. $[-3;3]$ B. $[-3;3]$ C. $[-3;3]$ Simplifique a expressão $\frac{c^2+6c+9}{c^2-9}$: A. 1 B. $\frac{c+3}{c-3}$ C. $\frac{c-3}{c+3}$ Se $z_1=6+3i$ e $z_2=3-i$, onde $i=\sqrt{-1}$, então $\frac{z_1}{z_2}$ é igual a:

De quantas maneiras o professor poderá fazer a selecção:

B. 6

A. 720

Em uma turma da 10^a classe da Escola Secundaria de Songo há 30 rapazes e 24 raparigas. O director de turma pretende seleccionar um rapaz ou uma rapariga para ser representante da turma.


C. 54

D. 108

- 10 Sabendo que a soma de 3 números consecutivos é igual a 18, calcule o primeiro número da sequên-
 - A. -3
- B. 3

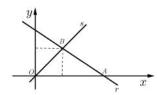
- C. -5
- **D.** 5
- Se as raizes de $ax^2 + bx + c = 0$ são números reais e iguais, é correcto afirmar que o gráfico da função 11
 - A. Intersecta o eixo OX em dois pontos diferentes
- B. Situa se completamente acima do eixo OX
- C. Situa se completamente abaixo do eixo OX
- D. É tangente ao eixo OX
- Num triângulo rectângulo, o menor catecto é 7cm menor que o maior catecto, e a hipotenusa é 2cm12 maior que o maior catecto. Os comprimentos dos lados do triângulo são:
 - **A.** 7, 14, 16
- B. -4.3.5
- C. 3, 4, 5
- D. 8, 15, 17

- A função $f(x) = \log(x^2 + \sqrt{x^2 + 1})$ é: 13
 - A. par
- B. ímpar
- C. par e impar
- D. nem par, nem impar
- Seja dado o polinómio $p(x) = x^3 + ax^2 x + d$ divisível por x 1 e cujo resto da divisão por x + 2 é 14 igual a -12. Os valores de a e d são:
 - A. d = -2 e a = 2
- B. a = 6 e d = -6
- C. d = 2 e a = -2
- D. a = -6 e d = 6
- 15 A figura abaixo mostra um triângulo ABC com um segmento AB prolongado até ao ponto D e o ângulo externo CBD medindo 145^o . A soma dos ângulos A e C é igual a:
 - A. 135°
- B. 155°
- C. 165°
- D. 145°

- A distancia do ponto P(2,3) à recta r:3x+4y=-2 é: 16

- B. -2
- **D**. 5
- 17 Considere a sucessão 7, 12, 17, 22, 27, · · · . O décimo quarto termo da sucessão é:
- C. 100
- Dada a sucessão $1; \frac{1}{3}; \frac{1}{9}; \frac{1}{27}; \cdots$. A soma infinita dos termos da sucessão é: 18
 - **A.** 3

- C. $\frac{3}{2}$
- D. $\frac{5}{2}$


- Simplificando a expressão $\frac{\sin 3x \sin x}{\cos 2x}$, obtém-se: 19
 - A. $\cos x$
- B. $2\sin x$
- D. 1
- Seja $\cos\theta=-\frac{\sqrt{3}}{2}$ e θ um ângulo do III quadrante. O valor de seno e tangente de θ são, respectiva-20
 - A. $\frac{1}{2} e^{\frac{\sqrt{3}}{3}}$
- B. $-\frac{1}{2} e^{-\frac{\sqrt{3}}{3}}$ C. $-\frac{1}{2} e^{\frac{\sqrt{3}}{3}}$

Na figura, estão representadas a recta x+3y-6=0 e a que tem coeficiente angular $\frac{2}{3}$ e que passa 21 pela origem das coordenadas. A área do triângulo OAB será igual a:

A. 3

B. 4

C. $\frac{4}{3}$ D. $\frac{16}{3}$

A solução geral da equação $\cos 2x = 0$ é: 22

A. $x = (2n+1)\frac{\pi}{2}$ B. $x = n\frac{\pi}{2}$

C. $x = (2n+1)\frac{\pi}{4}$ D. $x = n\frac{\pi}{4}$

onde, em todas as opções anteriores, $n \in \mathbb{Z}$.

23 Se x + y = 13 e xy = 1, então $x^2 + y^2$ é igual a:

A. 166

B. 167

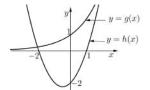
C. 168

D. 169

O limite $\lim_{x\to 0} \frac{3x}{\sin 5x}$ é igual a: 24

A. 1

B. 0


25 Sejam dados os gráficos das funções y = g(x) e y = h(x). O valor de h[g(0)] é:

A. 0

B. 1

C. 2

D. 3

Resolver a inequação $\left(\frac{1}{2}\right)^{3x-x^2} > 1$: 26

B. $x \in]-\infty, 0[\cup]3, +\infty[$ C. $x \in]0, 3[$

D. $x \in]-\infty, -3[\cup]0, +\infty[$

Resolver a equação $\log_5(x+1) + \log_5(2x+3) = 0$: 27

A. $x \in \left\{-\frac{1}{2}, -2\right\}$ B. $x \in \left\{-\frac{3}{2}, -1\right\}$ C. $x \in \left\{-\frac{1}{2}\right\}$ D. $x \in \left[-2, -1\right]$

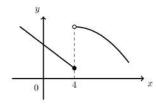
O valor de x que satisfaz a equação $4^x - 2^x - 12 = 0$ é: 28

A. 2

B. -2

C. -3

D. 1


29 Na figura ao lado está representada parte do gráfico de uma função f, de domínio \mathbb{R} . Qual das seguintes afirmações é verdadeira?

A. $\lim_{x \to 4^-} f(x) = f(4)$ e $\lim_{x \to 4^+} f(x) = f(4)$

B. $\lim_{x \to 4^{-}} f(x) = f(4)$ e $\lim_{x \to 4^{+}} f(x) \neq f(4)$

C. $\lim_{x \to 4^{-}} f(x) \neq f(4)$ e $\lim_{x \to 4^{+}} f(x) = f(4)$

D. $\lim_{x \to 4^{-}} f(x) \neq f(4)$ e $\lim_{x \to 4^{+}} f(x) \neq f(4)$

Dada a função $f(x)=\frac{1}{\sqrt{x-2}}.$ O domínio (D_f) e contradomínio (CD_f) de f são: 30

A. $D_f =]-\infty; 2[$ $CD_f =]0; +\infty[$

B. $D_f =]0; +\infty[$ $CD_f =]0; +\infty[$ C. $D_f =]2; +\infty[$ $CD_f =]0; +\infty[$ D. $D_f =]-2; \infty[$ $CD_f =]2; \infty[$

- Se $x^y = \sqrt[3]{2}$ e k corresponde a 20% de $\frac{2}{3}$, então $x^{3y} + \mathbf{k}$ é igual a:
 - A. $\frac{2}{15}$
- B. 32
- C. $\frac{4}{15}$
- D. $\frac{32}{15}$
- Sejam f e g funções de $\mathbb R$ em $\mathbb R$, sendo $\mathbb R$ o conjunto de números reais, dadas por f(x)=2x-3 e 32 f[g(x)] = -4x + 1. Nestas condições, g(-1) é igual a:
- **B.** 0

- Seja a função definida por $f(x)=\frac{2x-3}{5x}$. O elemento do domínio de f que tem $-\frac{2}{5}$ como imagem é: 33
 - **A.** 0

- D. $\frac{4}{3}$

- A função inversa de $y = \frac{2x-3}{4}$ é: 34
 - A. $y = \frac{4}{2x 3}$
- B. $y = 4^{-1}(2x+3)$ C. $x = \frac{4y+3}{2}$ D. $y = \frac{4x+3}{2}$

- A função $f(x)=\frac{2x}{x^2+1}$ atinge um máximo local no(s) ponto(s): 35
 - A. (-1,1)
- B. (1,1)
- C. (1,1) e (-1,-1) D. (-1,-1)

- 36 A derivada da função $f(x) = \ln(1 + \sin x)$ é:
 - A. $1 + \cos x$
- B. $\frac{\sin x}{1 + \cos x}$
- C. $\ln(\sin x)$
- $D. \ \frac{\cos x}{1 + \sin x}$

- Seja $g(x) = x(1+x)^3$. Então, g''(0) é igual a: 37

B. 1

- C. 6
- D. 3
- 38 O movimento de um projétil, lançado para cima verticalmente, é descrito pela equação $h(t) = -40t^2 +$ 200t, onde h(t) é a altura, em metros, atingida pelo projétil t segundos após o lançamento. A altura máxima atingida e o tempo que esse projétil permanece no ar correspondem, respectivamente, a:
 - A. 250m e 5s
- B. 500m e 27s
- C. 100m e 25s
- D. 200m e 40s

Considerando o gráfico que se segue, responda as questões 39 e 40.

- 39 O conjunto solução da equação g(x) - h(x) = 0 é:
 - **A.** {0, 3}
 - B. {4}
 - C. {1,4}
 - D. $\{0,4\}$

- 40 A expressão analítica da parábola é:
 - A. $g(x) = (x-2)^2 + 4$
 - B. $g(x) = (x+2)^2 4$

- C. $q(x) = -(x+2)^2 + 4$
- D. $g(x) = -(x-2)^2 + 4$

ANO 2022			
Disciplina:	Física	Número de questões	40
Duração:	120 minutos	Opções por questão:	4

INSTRUÇÕES

- Preencha as suas respostas na **FOLHA DE RESPOSTAS** que lhe foi atribuída no inicio deste exame. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- Na FOLHA DE RESPOSTAS, assinale a letra que corresponde a alternativa correta, colocando uma cruz "x" sobre a circunferência "()" correspondente.

1	l	A função horária do movimento de uma viatura è dada por: $x(t) = 3 + 2t + t^2$, no SI. Pode-se afirmar	
		que:	

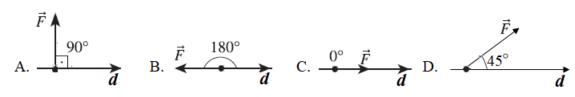
A.
$$v_0 = 2 e a = 2$$

B.
$$v_0 = 3 e a = 5$$

A.
$$v_0 = 2 e a = 2$$
 B. $v_0 = 3 e a = 5$ C. $x_0 = 3 e a = 10$ D. $x_0 = 2 e a = 5$.

D.
$$x_0 = 2 e a = 5$$
.

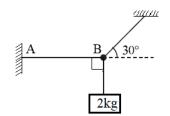
Um corpo largado de uma certa altura em queda livre atinge o solo com velocidade de 49 m/s. O seu tempo de queda é? $(g = 9, 8 m/s^2)$. :


A aceleração de gravidade na lua é $g_L = 1.6 \ m/s^2$ e, na Terra é $g_T = 9.8 \ m/s^2$. Se um corpo pesar 3 $98\ N$ na Terra, o mesmo na Lua irá pesar:

A.
$$16 N$$

B.
$$98 N$$

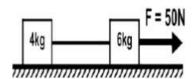
C.
$$980~N$$


Nas alternativas seguintes está representada uma força constante \vec{F} , actuando sobre um móvel, e o seu deslocamento d. Em que situação o trabalho realizado por esta força é nulo?

Considerando $g = 10 \ m/s^2$, para garantir o equilíbrio do bloco de $2 \ kg$ ilustrado pela figura ao lado, 5 a intensidade da força de tensão no cabo AB deve ser:

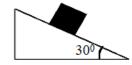
A. 30 N

B. $20\sqrt{3} N$ C. $30\sqrt{3} N$ D. 600 N



Dois blocos de massas 4 kg e 6 kg, presos através de um fio inextensível e de massa desprezível, são arrastados por uma força de 50 N ao longo de uma superfície livre de atrito como mostra a figura. A tensão no fio que une os dois corpos é:

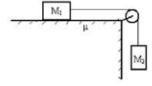
A. 20 N


B. 15 *N* C. 5 *N*

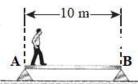
D. 1,9 N

A figura ao lado representa um bloco de 8 kg, que desliza sobre um plano inclinado sem atrito. A aceleração com que o bloco desliza é:

A. $5 m/s^2$ B. $10 m/s^2$ C. $40 m/s^2$ D. $80 m/s^2$


No sistema ao lado, M_1 = M_2 =10 kg e o coeficiente de atrito cinético entre o bloco M_1 e o plano vale 8 0,1. Qual é, em unidades SI, a tração no fio? $g = 10 m/s^2$.

A. 64


B. 55

C. 85

D. 92

Um rapaz de 40~kg caminha sobre uma prancha homogênea de 20~kg, suportada pelos dois apoios A e B. Sabendo que o apoio B suporta no máximo um peso de 300 N:

9

A. A distância máxima que o rapaz deve percorrer a prancha sem embaraço é de 3 m;

B. A distância máxima que o rapaz deve percorrer a prancha sem embaraço é de 5 m;

C. A distância máxima que o rapaz deve percorrer a prancha sem embaraço é de 7,5 m;

D. O rapaz estará em perigo só e só se alcançar a extremidade B.

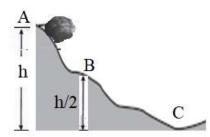
10 No problema anterior, pode-se afirmar que quando o rapaz estiver exatamente a meio caminho, a força da reação dos apoios A e B serão respectivamente:

A. 300 N e 300 N

B. 200 N e 200 N

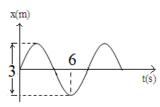
C. 400 N e 200 N

D. 40 N e 20 N


Numa das encostas da montanha M'bonga, uma pedra de duas toneladas desliza sem atrito ao longo 11 do trilho ABC como mostra a figura ao lado. Sabe se que em A, a energia cinética da pedra é nula e a sua energia potencial é 4 kJ.

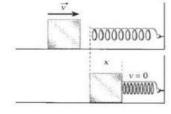
A. A velocidade da pedra em A vale 5 m/s;

B. A energia potencial da pedra em B vale 4 kJ;


C. A energia cinética da pedra em B vale 16 kJ;

D. A energia mecânica total da pedra em C vale 4 kJ.

O gráfico ao lado ilustra o movimento harmônico simples de um certo ponto material. Os valores da amplitude e da frequência no SI respectivamente são:



13 Um bloco de massa $M=4\ kg$ choca uma mola de constante elástica $k=100\ N/m$ a uma velocidade horizontal de 0.5 m/s. Não há atrito entre o bloco e a superfície de contacto. A deformação máxima sofrida pela mola é:

- B. 8 cm
- **C.** 10 *cm*
- D. 15 cm

A função de propagação de uma onda mecânica é dada por: $y(x,t) = 2sen(3\pi t - 4\pi x)$, no SI. Neste 14 caso, a amplitude, o período e o comprimento de onda são respectivamente:

B.
$$2m, \frac{3}{4}s \text{ e } 4m$$

C.
$$\frac{2}{3}m, 3s \ e^{\frac{1}{4}m}$$

B.
$$2m, \frac{3}{4}s$$
 e $4m$ C. $\frac{2}{3}m, 3s$ e $\frac{1}{4}m$ D. $2m, \frac{2}{3}s$ e $\frac{1}{2}m$

15 Um objeto feito de ouro maciço tem 500 g de massa e 25 cm³ de volume. A densidade do objecto e a massa específica do ouro em g/cm^3 e kg/m^3 , serão de:

A.
$$30 e 3 \cdot 10^4$$

B.
$$25 e 2 \cdot 10^4$$

C.
$$20 e 2 \cdot 10^4$$

D.
$$15 e 3 \cdot 10^4$$

Um reservatório contém água, cuja densidade é $1 \cdot 10^3 \ kg/m^3$, até uma altura de 10 m. A pressão 16 atmosférica local é de $10^5\ N/m^2$ e g = $10\ m/s^2$. A pressão no fundo do reservatório é:

A.
$$2 \cdot 10^5 \ N/m^2$$

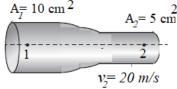
B.
$$1 \cdot 10^5 \ N/m^2$$

C.
$$1 \cdot 10^8 \ N/m^2$$

D.
$$2 \cdot 10^9 \ N/m^2$$

A vazão média da barragem de Cahora Bassa é de $2000 \ m^3/s$. Nestas condições pode-se afirmar que 17 o volume de água escoado pela Cahora Bassa por hora é de:

A.
$$7, 2 \cdot 10^6 \ m^3$$


B.
$$7, 2 \cdot 10^3 \ m^3$$

C.
$$7, 2 \cdot 10^{-3} m^3$$

C.
$$7.2 \cdot 10^{-3} m^3$$
 D. $7.2 \cdot 10^{-6} m^3$

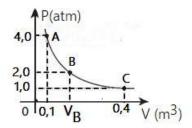
18 Um líquido passa por um cano, como mostra a figura ao lado. A velocidade do líquido ao passar por A_1 é:

19 Um gás ideal, inicialmente ocupa um volume de $1.5 m^3$ a 240 K. Quando sua temperatura se eleval isobaricamente para 400 K, o seu volume será de :

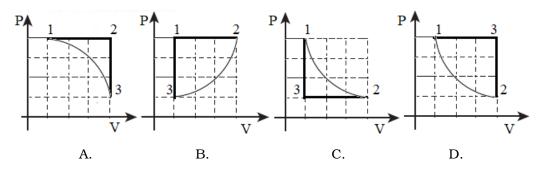
A.
$$2.5 m^3$$

B.
$$3.5 m^3$$

C.
$$4.0 m^3$$


D.
$$6,0 \ m^3$$

O gráfico ao lado representa a transformação de uma certa quantidade de gás ideal em três estados 20 intermediários A,B e C. De acordo com este gráfico, estamos perante uma transformação:



C. Isocórica

D. Isovolumétrica

Um determinado gás ideal sofre uma expansão, uma compressão isobárica e um aquecimento iso-21 volumétrico segundo o ciclo $1\longrightarrow 2\longrightarrow 3\longrightarrow 1$. O diagrama que representa o ciclo é:

22 Um sistema termodinâmico absorve 120 cal quando sobre ele é realizado um trabalho de 350 J. A variação da energia interna deste será:

- 23 Numa transformação isotérmica de um gás ideal, o gás recebe do meio exterior $2000\ J$ de calor. Sabendo que a temperatura do processo é de 800 K, podemos afirmar que neste processo:
 - A. O gás sofreu uma compressão.
 - B. A variação da energia interna do gás é nula.
 - C. A variação da energia interna do gás é de 2000 J.
 - D. O trabalho realizado na transformação é nulo.
- Um sistema passa de um estado para o outro, trocando energia com a sua vizinhança. Se o sistema 24 absorve 418 J de calor e realiza um trabalho de 200 J, a variação da energia interna do sistema será de:

D.
$$83600 J$$

Num átomo de hidrogénio, a separação média entre o electrão e o protão é cerca de 5.10⁻¹¹ m. A 25 magnitude da força de atração entre estas duas partículas é:

A.
$$11 \cdot 10^{-8} N$$

B.
$$6.2 \cdot 10^{-8} N$$

C.
$$8 \cdot 10^{-8} N$$

D.
$$9.2 \cdot 10^{-8} N$$

A magnitude do campo eléctrico criado por uma carga puntiforme Q =1,6 μ C, num dado ponto 26 situado a $3,0~\mathrm{mm}$, no vácuo ($k=9.10^9~Nm^2/C^2$) é:

A.
$$4, 8 \cdot 10^9 \ N/C$$

B.
$$1, 6 \cdot 10^9 \ N/C$$

C.
$$9 \cdot 10^9 \ N/C$$

C.
$$9 \cdot 10^9 \ N/C$$
 D. $3 \cdot 10^9 \ N/C$

27 Duas cargas eléctricas negativas, com mesma magnitude, estão colocadas nos vértices A e B de um triângulo equilátero (ver figura ao lado). O sentido do vector campo eléctrico no vértice C é:

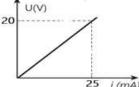
Uma carga $Q = 2.0 \ \mu C$ é colocada num dado ponto do espaço e fica sujeita a uma força eléctrica de 28 magnitude F=10 N, orientada para esquerda. Nesse tal ponto, a magnitude do campo eléctrico é

A. $5,0\cdot 10^{-6}N/C$ e orienta-se para baixo. C. $5,0\cdot 10^{6}~N/C$ e orienta-se para esquerda

B. $2, 0 \cdot 10^6 \ N/C$ e orienta-se para esquerda

D. $20 \cdot 10^{-6} \ N/C$ e orienta-se para direita

Observe a figura ao lado. Se o campo eléctrico no ponto P for nulo, a relação entre Q_1 e Q_2 deve ser: 29

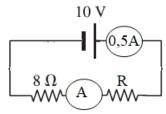


Sendo $k=9.10^9~Nm^2/C^2$, o potencial eléctrico à uma distância de 1,0 cm de uma carga de 1,0 ηC é 30

- **A.** 100 V
- B. 900 V
- C. 10 V
- D. 9 V
- Por um resistor faz-se passar uma corrente (i) e mede-se a ddp (U). De acordo com gráfico ao lado, 31

a resistência eléctrica do resistor é:

- A. 800Ω
- B. $1,25 \Omega$ C. $12,5 \Omega$
- D. 500Ω


- 32 Uma resistência eléctrica de $5~\Omega$ e outra de $20~\Omega$ são associadas em paralelo, e a essa associação, aplica-se uma ddp de 100 V. Pode-se afirmar que a resistência equivalente da associação e a intensidade da corrente eléctrica na associação é de:
 - A. 5Ω e 30 A
- B. $3 \Omega e 25 A$
- C. 4Ω e 25 A
- D. 2 Ω e 24 A
- Quando uma corrente i passa por um resistor, de resistência R, a potência dissipada é P. se a 33 corrente decrescer para i/2, a nova potência será:

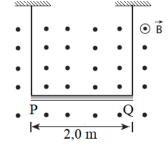
- B. 2P
- C. $\frac{P}{4}$
- D. 4P
- Dois condutores feitos do mesmo material têm mesma área da secção transversal e resistências R_1 e R_2 respectivamente. Se o comprimento do primeiro é o dobro do segundo ($L_1=2L_2$), podemos afirmar que:
 - A. $R_1 = R_2$

- B. $R_1 = 2R_2$ C. $R_1 = \frac{1}{2}R_2$ D. $R_1 = 4R_2$

No circuito ao lado, a leitura do amperímetro A e o valor do resistor R são respectivamente:

- A. $0.5 A e 12 \Omega$
- C. $1.0 A e 20 \Omega$
- B. $0.5 A e 20 \Omega$
- D. $1,0 A e 12 \Omega$

Um ferro de engomar com uma potência de 2000 W permaneceu ligado por 4h. A quantidade de 36 energia eléctrica consumida nesse intervalo de tempo foi de:


- **A.** 5 000 kWh
- B. 8 000 kWh
- D. 8 *kWh*

Perpendicularmente a um campo magnético uniforme de intensidade B = 0,5 T, uma partícula com 37 carga $q = 1, 6 \cdot 10^{-19}$ C penetra a uma velocidade $v = 1, 0 \cdot 10^7$ m/s. O módulo da força magnética sobre a partícula é:

- A. $0.8 \cdot 10^{-12} N$
- B. $8.0 \cdot 10^{-26} N$ C. $3.2 \cdot 10^{-12} N$ D. $32 \cdot 10^{-26} N$

38 Um condutor rectilíneo, de peso 1,0 N, percorrido por uma corrente de 1,0 A, no sentido de P para Q é sustentado por dois fios ideais isolantes, numa região onde existe um campo magnético de módulo 1,0 T, conforme a figura ao lado. O módulo da força de tensão em cada um dos fios é:

- **A.** 2,0 *N*
- B. 1,0 N
- C. 1, 5 N
- D. 2,5 N

39 A corrente eléctrica induzida numa espira circular será:

- A. Nula quando o fluxo magnético que atravessa a espira for constante;
- B. Inversamente proporcional à variação do fluxo magnético com o tempo;
- C. No mesmo sentido da variação do fluxo magnético;
- D. Tanto maior quanto maior for a resistência da espira;

Corrente eléctrica é fonte de campo magnético. Esse facto tem aplicação: 40

A. Nos ferros de engomar

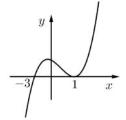
- C. Nos fogões eléctricos
- B. Nas campainhas eléctricas
- D. Nos capacitores

		ANO 2022	
Disciplina:	Matemática	Número de questões	40
Duração:	120 minutos	Opções por questão:	4

INSTRUÇÕES

- Preencha as suas respostas na **FOLHA DE RESPOSTAS** que lhe foi atribuída no inicio deste exame. Não será aceite qual quer outra folha adicional, incluindo este enunciado.
- Na **FOLHA DE RESPOSTAS**, assinale a letra que corresponde a alternativa correta, colocando uma cruz "×" sobre a circunferência "○" correspondente.

1.	Simplificando a expres	esão $\left[\frac{2^9}{\left(2^2.2\right)^3}\right]^{-3}$ obtem	- se:	
	A. 2 ³⁶	B. 2^{-30}	C. 2^{-6}	D. 1
2.	O resultado da simplif	icação da expressão $\left(\frac{1}{m}\right)$	$\left(\frac{1}{n-n} - \frac{1}{m+n}\right) : \frac{2}{3m-3n}$ é:	
	A. $\frac{2n}{m+n}$	B. $-\frac{2n}{m+n}$	C. $-\frac{3n}{m+n}$	D. $\frac{3n}{m+n}$
3.	$ ho$ A expressão $2 \ln \left(e^5\right)$ é	igual a:		
	A. e^{10}	B. 25	C. 10	D. $\ln(2e^5)$
4.	A solução da inequaçã	o 5 + x > 3x - 3(4x + 5)	é:	
	A. $x > -1$	B. $x < -2$	C. $x > -2$	D. $x < 5$
5.	O conjunto solução do	sistema de inequações	$7x - 3 \ge -24 \text{ e} - 11x +$	$10 \ge -12 \text{ \'e}$
	A. [-3;2]	B. [2; 3]	C. $[-3; -2]$	
6.	Considere a equação <i>x k</i> ?	$x^2 - kx + k = 1$. Se uma d	las raizes dessa equaç	ão for nula, qual será o valor de
	A. 2	B1	C. 1	D. 0
7.	A soma e o producto da quadrática é	as raízes de uma equaçã	ão quadrática são 3 e –	10, respectivamente. A equação
	A. $x^2 - 3x + 10 = 0$	B. $x^2 + 3x - 10 = 0$	C. $x^2 - 3x - 10 = 0$	D. $x^2 + 3x + 10 = 0$
8.	A solução da inequaçã	o $4 - x^2 \le 0$ é:		
	A. $x \leq \pm 2$	B. $x \le -2 \lor x \le 2$	C. $-2 \le x \le 2$	$D. x \le -2 \lor x \ge 2$


9.	Se o lado de um trià	ángulo equilátero mede 4	cm. A medida da sua a	ltura serā:
	A. $\sqrt{3}cm$	B. $2\sqrt{3}cm$ C. 26	m D. $\sqrt{2}cm$	
10.	Qual é o valor da so	oma algébrica $\sin(240^o)$ –	$\cos(150^{\circ}) + tg(330^{\circ})$?	
	A. $\frac{\sqrt{3}}{3}$	B. √3	C. $\frac{\sqrt{3}}{2}$	D. Nenhuma das alter- nativas anteriores
11.		ápis e 7 canetas custa 19 sto de cada lápis e o de o		o de 7 lápis e 5 canetas custam
	A. 4 <i>e</i> 25	B. 6 e 24	C. 8 e 15	D. 10 <i>e</i> 12
12.	Se $\cot \theta = \frac{8}{15} e \cos \theta$	$=\frac{8}{17}$ entâo $\sin\theta=?$		
	A. $\frac{15}{8}$	B. $\frac{17}{8}$	C. $\frac{15}{17}$	D. $\frac{17}{15}$
13.	Se $\tan \theta < 0$ e $\cos \theta <$	0, então θ pertence ao		
	A. I Quadrante	B. II Quadrante	C. III Quadrante	D. IV Quadrante
14.	A solução da equaç			
	A. Ø	B. $\{0;3\}$	C. {2;3}	D. Nenhuma das opções
15.	O menor número in	teiro positivo que satisfa	z a desigualdade $ x-2 $	> 7 é
	A. 9	B. 10	C. 7	D. 2
16.	De quantas formas	podem se posicionar 6 p	essoas em uma fila de	espera.
	A. 6	B. 12	C. 1	D. 720
17.	Se o termo de orde termos é	m n de uma progressão	aritmética é $(2n+1)$, e	então a soma dos três primeiros
	A. $6n + 3$	B. 15	C. 12	D. 21
18.	O 5 <u>0</u> e o 11 <u>0</u> termo d	e uma progressão geomé	etrica são $\frac{1}{24}$ e $\frac{8}{3}$ respect	tivamente. A sua razão é igual a
	A. $\frac{1}{2}$	B. 3	C. $\frac{1}{9}$	D. 2
19.	A opção que corresp	bonde ao valor de $\frac{11! - 10}{9!}$	0! é	
	A. 1	B. $\frac{1}{9}$	C. 100	D. 10
20.	$f(x) = x^2 c$	$\cos x + 2022 \text{ \'e}$		
	A. Impar	B. Par e Impar	C. Par	D. Nem par, nem impar
21.	Seja $f(x) = \sqrt{9 - x^2}$.	Então o domínio de $f(x)$) é:	
	A. [-3, 3]		C. $[3,\infty[$	D.] $-\infty, -3] \cup]4, \infty[$
22.	Sejam f e g duas fu $f \circ g$. Então para tod		ivamente, por $f(x) = cc$	$pos(x) e g(x) = 2x - \frac{\pi}{4}. Seja h(x) =$
			$\frac{\pi}{4}$ C. $h(x) = \cos(2x) - \frac{\pi}{4}$	$\frac{\pi}{4}$ D. $h(x) = \cos\left(2x - \frac{\pi}{4}\right)$

23. Na figura abaixo, está representada parte do gráfico da função f(x), contínua em \mathbb{R} . A função f(x)tem apenas dois zeros x=-3 e x=1 Seja g(x) a função definida por $g(x)=\sqrt{f(x)}$. Qual dos seguintes conjuntos pode ser o domínio da função y=g(x)

A.
$$]-\infty;1[$$
 B. $\mathbb{R}\setminus\{-3;1\}$ C. $]-\infty;-3[$ D. $[-3;+\infty[$

D.
$$[-3; +\infty[$$

O $\lim_{x \to 9} \frac{3 - \sqrt{x}}{x - 9}$ é igual a: 24.

A.
$$\frac{1}{6}$$

B.
$$-6$$
 C. $-\frac{1}{6}$

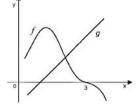
A inversa da função $f(x) = (x-2)^3$ é 25.

A.
$$f^{-1}(x) = \frac{1}{(x-2)^3}$$
 B. $f^{-1}(x) = \sqrt[3]{(x-2)}$ C. $f^{-1}(x) = \frac{x-2}{3}$ D. $f^{-1}(x) = \sqrt[3]{x} + 2$

B.
$$f^{-1}(x) = \sqrt[3]{(x-2)}$$

C.
$$f^{-1}(x) = \frac{x-1}{3}$$

D.
$$f^{-1}(x) = \sqrt[3]{x} + 2$$


26. Na figura está representada parte dos gráficos de duas funções f e g, contínuas em \mathbb{R} . O gráfico de f intersecta o eixo Ox no ponto de abcissa 3. Indique o valor de $\lim_{x\to 2^-} \frac{g(x)}{f(x)}$

$$C. -\infty$$

D.
$$+\infty$$

- Quanto a continuidade, a função $f(x) = \begin{cases} \frac{\sin 2x}{x}, & \text{se } x < 0 \\ x + 2, & \text{se } x \ge 0 \end{cases}$ 27.
 - A. Descontinua em x=2

C. Continua

B. Descontinua em x = 0

- D. Nenhuma das opções
- Seja f uma função de domínio \mathbb{R} . Sabe-se que a sua derivada, f', é tal que $f'(x) = x 2, \forall x \in \mathbb{R}$. 28. Relativamente à função f, qual das afirmações seguintes é verdadeira?
 - A. f é crescente em \mathbb{R}

C. f tem minimo para x = 2.

B. f é decrescente em \mathbb{R}

D. f tem máximo para x=2.

A primeira derivada de $f(x) = \ln(x^2)$ é: 29.

A.
$$\frac{2}{x}$$

B.
$$2\ln(x)$$

C.
$$\frac{1}{r^2}$$

D.
$$\frac{1}{\ln(x^2)}$$

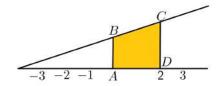
A derivada da função $y = e^{\sqrt{2x}}(\sqrt{2x} - 1)$ é: 30.

A.
$$y' = xe^{\sqrt{2x}}$$
 B. $y' = \frac{xe^{\sqrt{2x}}}{\sqrt{2x}}(\sqrt{2x} - 1)$ C. $y' = xe^{\sqrt{2x}}(\sqrt{2x} - 1)$ D. $y' = e^{\sqrt{2x}}$

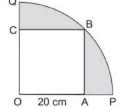
Se a distância entre dois pontos A(4,p) e B(1,0) é 5 então 31.

A.
$$p = 4$$
 apenas

B.
$$-4$$
 apenas

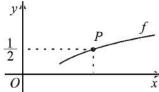

C.
$$p = \pm 4$$

D.
$$p = 0$$


- A equação da recta que passa pelo ponto P(3;2) e tem declive m=4 é:

 - A. 4x y + 10 = 0 B. -x 4y 10 = 0 C. x 4y 10 = 0 D. 4x y 10 = 0

- Dados $Z_1 = 4 + 3i$ e $Z_2 = -3 i$, determinar $\bar{Z}_1 + \bar{Z}_2$. 33.
- C. -1 + 2i
- D. 1 + 2i
- Na figura, está representada uma recta de equação $y=\frac{1}{3}x+1$. A área do trapézio ABCD é igual a: 34.



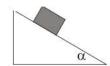
- 35. Na figura ao lado, o quadrado OABC está inscrito no quadrante OPBQ. Se $\overline{OA} = 20 \ cm$. Ache área da região sombreada. (Use $\pi = 3.14$)

- A. $214 \ cm^2$
- B. $242 \ cm^2$
- C. $228 \ cm^2$
- D. $248 \ cm^2$
- Simplificando $\log_2(8x^2) \log_2 x$ obtem se: 36.
 - A. $15\log_2 x$
- B. $3 + \log_2 x$
- C. $6 + \log_2 x$
- D. $2\log_2(8x) \log_2 x$
- Achar o maior número natural que satisfaz a seguinte inequação $\log_{\frac{1}{10}}(2x+1) \geq -1$ 37.
 - A. $x = \frac{9}{2}$
- B. x = 5
- C. x = 4
- D. Nenhuma das alternativas anteriores

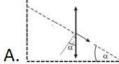
- O conjunto solução da equação $\log_2(x^3-19)=3$ é 38.
 - A. {22}
- B. $\{-3\}$
- C. $\{-22\}$
- D. {3}
- A figura representa parte da função f, de domínio R^+ , definida por $f(x) = \log_9(x)$. P é o ponto do 39. gráfico de f que tem ordenada $\frac{1}{2}$. O valor da coordenada do ponto P será:
- B. 2
- D. 3

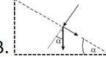
- 40. Sejam X e Y dois conjuntos. Se $X \subset Y$ e $Y \subset X$, então:
 - A. $X = \emptyset$
- B. X = Y
- C. $Y = \emptyset$
- D. Nenhuma das opções

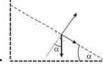
Instituto Superior Politécnico de Songo

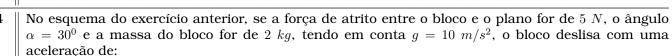

Comissão de Gestão de Exames de Admissão

ANO 2024			
Disciplina:	Física	Número de questões	40
Duração:	120 minutos	Opções por questão:	4

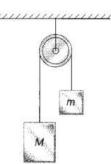

INSTRUÇÕES

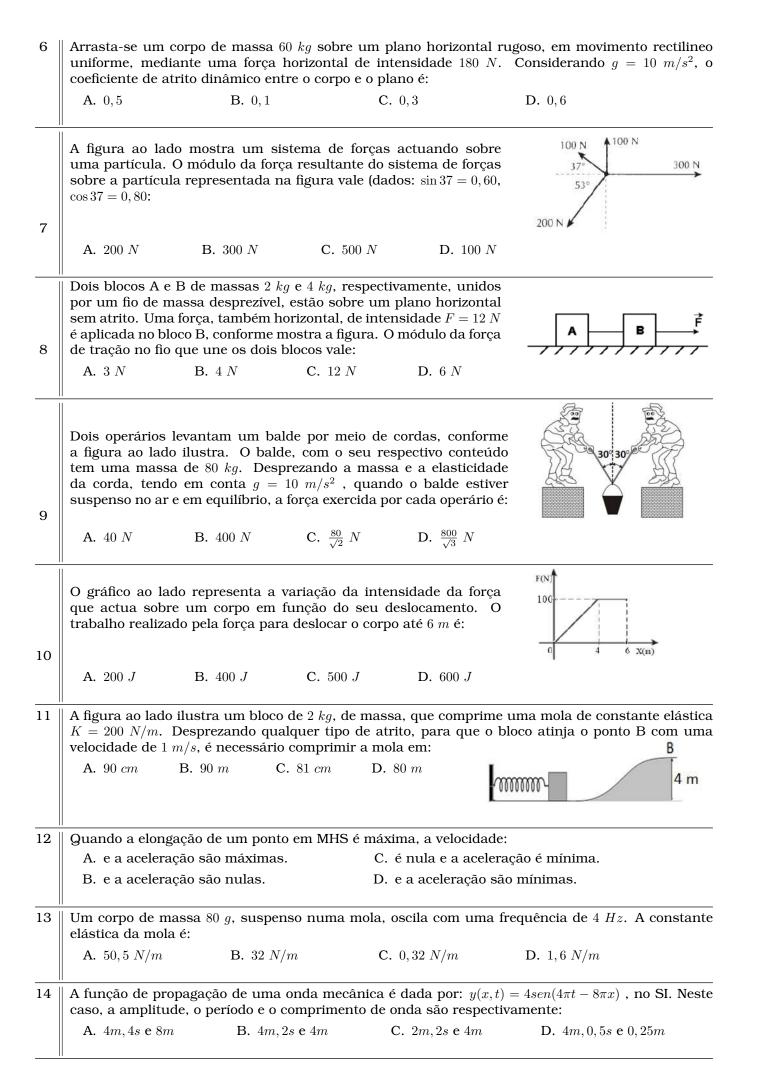

- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi atribuída no inicio deste exame. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- Na FOLHA DE RESPOSTAS, assinale a letra que corresponde a alternativa correta, colocando uma cruz "×" sobre a circunferência "()" correspondente.
- A distância entre o Sol e a Terra é de $1,493 \cdot 10^8 \ km$. Sabendo que a velocidade da luz no vácuo é 1 igual a $3,03\cdot10^5~km/s$, e que o movimento da sua propagação é retilíneo e uniforme, o intervalo de tempo necessário para que a luz do sol chegue à Terra é:
 - A. $\approx 30s$
- B. $\approx 8min$
- C. $\approx 6h$
- D. $\approx 12h$.
- Uma esfera é atirada verticalmente para cima, a partir do solo, com velocidade inicial de 50 m/s. Desprezando a resistência do ar e adotando $g=10\ m/s^2$, o tempo de subida e a altura máxima atingida pela esfera são, respectivamente:
 - A. 5 s e 125 m
- B. 50 s e 125 m
- C. 5 s e 500 m
- D. 50 s e 500 m


A figura ao lado mostra um bloco de madeira que desliza para baixo sobre um plano inclinado, sob acção das forças normal, de atrito e peso. Nestas condições, a alternativa que representa corretamente o esquema das forças exercidas sobre o bloco de madeira é:

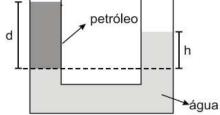


3

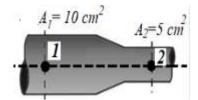




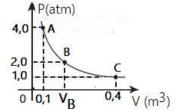
- A. $2,5 \ m/s^2$
- B. $5 m/s^2$
- C. $7.5 \ m/s^2$ D. $10 \ m/s^2$
- 5 No sistema de roldanas simples, com massa desprezível, sem atrito e fio flexível, representado na figura ao lado, se assumir-se a condição $M\gg m$ o valor mais aproximado da tensão do fio T é:



- Um objeto de volume $26 \ cm^3$ encontra-se totalmente imerso em um líquido de densidade igual a $1000 \ kg/m^3$. Nesse caso, considerando $g = 10 \ m/s^2$, o valor do empuxo do líquido sobre o objeto é:
 - **A.** 26000 N
- B. 0,26 N
- C. 52000 N
- D. 5,2 N
- Considere duas regiões diferentes do leito de rio Zambeze: uma larga A com área de secção transversal de $200\ m^2$ e a outra estreita B, com $40\ m^2$. A velocidade do rio na região A vale 1m/s, pode-se concluir que a velocidade (em m/s) do rio na região B vale:
 - **A.** 5

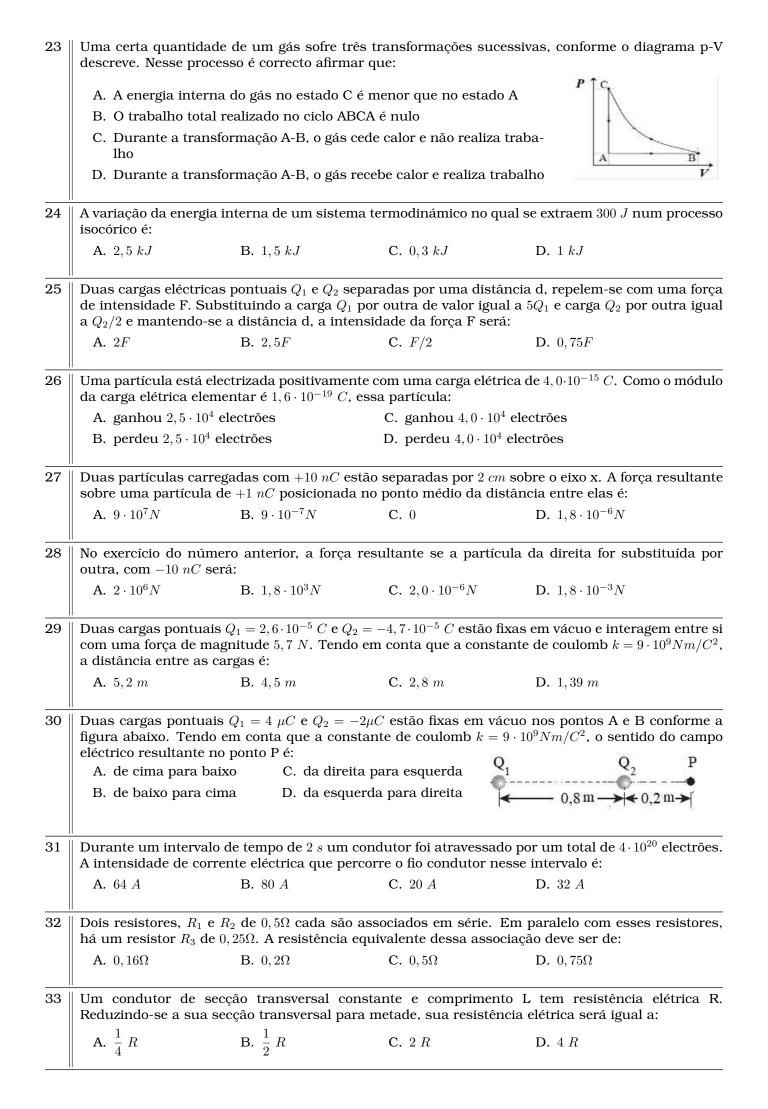

B. 2

C. 3


- D. 4
- A figura ao lado ilustra um aparelho utilizado para calcular a densidade do petróleo. Sabendo que a densidade da água é igual a $1000 \ kg/m^3$, $h=4 \ cm$ e $d=5 \ cm$, pode-se afirmar que a densidade do petróleo é:
 - A. $200 \ kg/m^3$
- C. $800 \ kg/m^3$
- B. $500 \ kg/m^3$
- D. $5000 \ kg/m^3$

- A água cuja massa específica é $10^3\ kg/m^3$, escoa através de um tubo horizontal representado na figura ao lado. Se a pressão manométrica no ponto 1 for de 4 kPa, e a velocidade neste mesmo ponto for de 1 m/s, é certo afirmar que:
 - A. no ponto 1 tal como no ponto 2 , a vazão da água será $10^{-3}\ m^3/s$
 - B. a velocidade no ponto 2 também será de 1 m/s
 - C. a velocidade no ponto 2 cairá para a metade
 - D. a velocidade no ponto 2 será de $0,15\ m/s$

- Uma amostra de gás de $400~cm^3$ a temperatura de 10^0 C encontra-se encerrada num sistema termodinámico isobárico. Se a temperatura deste gás for elevada para 40^0 C, seu volume será:
 - A. $160 \ cm^3$
- B. $1600 \ cm^3$
- C. $44.2 \ cm^3$
- D. $442 \ cm^3$
- 20 O gráfico ao lado representa a transformação de uma certa quantidade de gás ideal em três estados intermediários A,B e C. De acordo com este gráfico, estamos perante uma transformação:
 - A. isobárica
 - B. isocórica
 - C. isotérmica
 - D. isovolumétrica

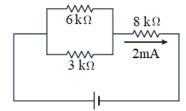


- Um gás perfeito sofre um processo adiabático no qual realiza um trabalho de 300 J. A quantidade de calor que o gás troca com o ambiente e a energia interna do processo, é:
 - A. Q = 2 J e $\Delta = 300 J$

C. $Q = 3 \ J \ e \ \Delta = 100 \ J$

B. Q = 3~J e $\Delta = -100~J$

- D. Q=0~J e $\Delta=-300~J$
- 22 | Um sistema termodinámico absorve $200\ J$ realizando um trabalho de $50\ J$. Nesse processo, pode-se afirmar que a variação de energia interna foi de:
 - **A.** 250 *J*
- B. 200 J
- **C.** 150 J
- D. 10000 J



34 No circuito representado pela figura ao lado foi medida a corrente na resistência de $8\,k\Omega$ e obteve-se o valor de 2 mA. Com esses dados, a ddp na resistência de $8 k\Omega$ e o valor da f.e.m são, respectivamente:

C. 18 V e 12 V

D. 16 V e 12 V

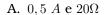
Perpendicularmente a um campo magnético uniforme de intensidade $B=0,5\,T$, uma partícula com 35 carga $1, 6 \cdot 10^{-19}~C$ penetra a uma velocidade $v = 1, 0 \cdot 10^7~m/s$. O módulo da força magnética sobre a partícula é:

A.
$$0.8 \cdot 10^{-12} N$$

B.
$$0.8 \cdot 10^{-26} N$$

C.
$$3.2 \cdot 10^{-12}N$$
 D. $3.2 \cdot 10^{-26}N$

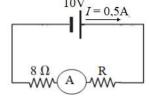
D.
$$3.2 \cdot 10^{-26} \text{ A}$$


36 Um dos fogões do restaurante Kubissa cuja potência é de 2000 W, diariamente permanece ligado por 8 h. A quantidade de energia eléctrica que este fogão utiliza por dia em kWh é:

B. 12 *kWh*

C. 16 *kWh*

D. 25 kWh


37 No circuito ao lado, a leitura do amperímetro A e o valor do resistor R são, respectivamente:

C. $1 A e 20\Omega$

B. $0.5 A e 12\Omega$

D. $1 A e 12\Omega$

38 Um campo magnético B é constante e uniforme. Uma carga eléctrica pontual penetra nesse campo com uma velocidade v. A força sobre a carga, devido ao campo magnético, será nula se o ângulo (em graus) entre B e v for igual à:

B. 90

C. 135

D. 270

39 Um condutor rectilíneo, de peso 1,0~N, percorrido por uma corrente de 1,0~A, no sentido de P para Q e sustentado por dois fios ideais isolantes, numa região onde existe um campo magnético de módulo 1,0 T, conforme a figura ao lado. A magnitude da força de tensão em cada um dos fios é:

A. 1,5 *N*

B. 2,5 N

C. 2.0 N

D. 3,0 N

- A figura ao lado mostra um protão, entrando perpendicularmente num campo magnético B com 40 velocidade v. O sentido da força magnética que actua sobre a carga é:
 - A. cima para baixo

B. baixo para cima

C. direita para esquerda

D. esquerda para direita

 \bigotimes \bigotimes \bigotimes \bigotimes B=4T

 $\otimes \otimes \otimes \otimes$

 $\otimes \otimes \otimes \otimes$

 \otimes \otimes $\uparrow^{v=2\cdot 10^3 m/s}$

		ANO 2024	
Disciplina:	Matemática	Número de questões	40
Duração:	120 minutos	Opções por questão:	4

INSTRUÇÕES

- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi atribuída no inicio deste exame. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- Na FOLHA DE RESPOSTAS, assinale a letra que corresponde a alternativa correta, colocando uma cruz "×" sobre a circunferência "()" correspondente.

$$A. 7^{12}$$

B.
$$7^{14}$$

$$D. \frac{24}{25}$$

2 A expressão simplificada de
$$\frac{(x^2y^3)^4(y^4)^0z^{-2}}{(xz^2)^3y^{-5}}$$
, é:

A.
$$\frac{x^5y^{17}}{z^8}$$

B.
$$x^3y^5z^{-7}$$

C.
$$\frac{x^{11}y^7}{z^{-8}}$$

D.
$$x^5y^{11}z^8$$

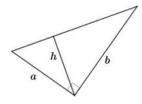
3 | A função de variável real, definida por
$$f(x) = (3-2a)x + 2$$
, é crescente quando:

A.
$$a > 0$$

B.
$$a < \frac{3}{2}$$

C.
$$a > \frac{3}{2}$$

D.
$$(5, +\infty)$$


4 | Qual é a medida da altura no triângulo rectângulo de catetos
$$a$$
 e b :

$$A. h = \frac{b}{2}$$

B.
$$h = \frac{a^2 + b^2}{ab}$$

A.
$$h = \frac{b}{2}$$
 B. $h = \frac{a^2 + b^2}{ab}$ **C.** $h = \frac{ab}{\sqrt{a^2 + b^2}}$ **D.** $h = \frac{ab}{2}$

D.
$$h = \frac{ab}{2}$$

- A. menor que 6
- B. maior que 6
- C. menor que 2
- D. maior que 2

6 Um avião levanta voo sob o ângulo constante de
$$30^{\circ}$$
. Após percorrer $2000m$ em linha recta, qual será a altura atingida pelo avião aproximadamente?

- A. 200m
- **B.** 1000m
- *C.* 2000m
- **D.** 100m

7 | Se
$$x$$
 for positivo e o inverso de $x + 2$ é $x - 2$, então x é:

A. 2

B. 5

- $C. \sqrt{2}$
- $D. \sqrt{5}$

8 | Qual é a expressão simplificada de
$$\frac{(n+2)! + (n+1)!}{(n+1)!}$$
?

A.
$$n + 3$$

B.
$$n + 1$$

C.
$$n + 2$$

O $\lim_{n \to +\infty} \sqrt[3]{\frac{16n^3 + 5n + 1}{2n^3 + 7}}$ é:

C. 0

 $D. \sqrt{8}$

10

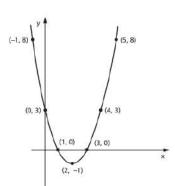
O sistema de equações $\begin{cases} 2x - y = 21 \\ x - 3y = 3 \end{cases}$ tem como solução, o par ordenado (x,y). Sendo assim, 6x - 8y é igual a:

A. 44

B. 40

C. 36

D. 48


Considere o gráfico da função f(x). A expressão analítica da função é

A.
$$f(x) = x^2 + 4x - 3$$

B.
$$f(x) = x^2 - 4x + 3$$

B.
$$f(x) = x^2 - 4x + 3$$

C. $f(x) = 2x^2 - x + 3$

D.
$$f(x) = x^2 + 2x - 1$$

12

Dado que $\sin(x) = \frac{3}{7}$, com $\frac{\pi}{2} < x < \pi$, $\cot(x)$ é:

A.
$$\frac{2\sqrt{10}}{7}$$

13

A simplificação da expressão $\frac{ca^2 - cx^2}{(a^2 + 2ax + x^2)(a^2 - 2ax + x^2)}$ é:

A. $-\frac{c}{a^2 - x^2}$ B. $\frac{c}{(a^2 + x^2)(a^2 - x^2)}$ C. $\frac{c}{(a + x)(x - a)}$ D. $-\frac{c}{x^2 - a^2}$

$$A. -\frac{c}{a^2 - x^2}$$

B.
$$\frac{c}{(a^2+x^2)(a^2-x^2)}$$

C.
$$\frac{c}{(a+x)(x-a)}$$

$$D. -\frac{c}{x^2 - a^2}$$

14

O termo independente c da equação $x^2-3x+c=0$ é escolhido aleatoriamente entre os elementos do conjunto $\{-1, 0, 1, 2, 3\}$. Qual é a probabilidade de essa equação assumir raizes reais?

15

O conjunto solução para a equação $\sqrt{(3x-5)^2} = |10-2x|$ é

$$A. x \in \left\{\frac{5}{3}, 5\right\}$$

B.
$$x \in \{-5,3\}$$
 C. $x \in]-5,3[$

C.
$$x \in]-5,3$$

$$D$$
. \emptyset

16

O valor da expressão $\frac{\cos^2 x - \cot x}{\sin^2 x - \tan x}$ é igual a:

A.
$$\cos^2 x$$

B.
$$\cot^2 x$$

C.
$$tan^2 x$$

$$D. \sin^2 x$$

17

Entre os cinco números 2, 3, 4, 5 e 6, dois deles são escolhidos ao acaso e calcula-se o produto dos mesmos. A probabilidade desse produto ser um número par é de:

18

Dada a seguinte PA, log 80, log 20, log 5. Qual é a sua razão?

A.
$$\frac{1}{4}$$

$$B. -2 \log 2$$

19

A soma dos 30 primeiros termos da sequência -11, -10, -9, -8, ... é:

2

Qual das opções representa o conjunto solução da inequação |7x - 4| < 5 - x?

A. $x < \frac{9}{6}$

B. $x > -\frac{1}{6}$ C. $-\frac{1}{6} < x < \frac{9}{8}$ D. $-\frac{1}{6} < x \le \frac{9}{8}$

Dadas as funções f, g e h, definidas por f(x)=3x, $g(x)=x^2-2x+1$ e h(x)=x+2, então $h\Big\{f\big[g(2)\big]\Big\}$ é 21 igual a:

A. 1

B. 2

Considere a função bijectiva $f: \mathbb{R} \setminus \{2\} \longrightarrow \mathbb{R} \setminus \{1\}$ definida por $f(x) = \frac{x+1}{x-2}$, a função inversa de f(x) é 22

A. $\frac{x-1}{x+2}$

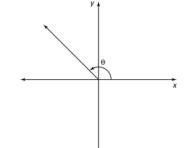
B. $\frac{2x+1}{x-1}$ C. $\frac{x-2}{x+1}$

D. (x+1)(x-2)

O domínio da função definida por $f(x) = \sqrt{2^{x+1} - 2^{-x}}$ é:

 $A. \left[-\frac{1}{2}, +\infty \left(\begin{array}{c} B. \left(-\infty, \frac{1}{2} \right) \\ \end{array} \right) C. \right) - \infty, 1 \right] \qquad D. \right) - \infty, -\frac{1}{2} \right]$ $Se \ f(n) = \begin{cases} \frac{n}{2}, \ se \ n \ for \ par \\ \\ \frac{n+1}{2}, \ se \ n \ for \ impar \end{cases} define \ uma \ função \ f: N \longrightarrow N. \ Então,$

A. f é apenas injectiva


C. f é apenas sobrejectiva

B. *f* é bijectiva

D. f não é injectiva nem sobrejectiva

25 Usando o gráfico abaixo, encontre a medida do ângulo que mais se assemelha ao ângulo θ :

A. $\frac{\pi}{3}$ B. $\frac{3\pi}{4}$ C. $\frac{7\pi}{6}$ D. $\frac{5\pi}{3}$

O valor do $\lim_{x \to 0} \frac{\sqrt{x+25}-5}{\sqrt{x+16}-4}$ é igual a:

Ache c tal que $f(x) = \begin{cases} cx - 2, se \ x \le 2 \\ cx^2 + 1, se \ x > 2 \end{cases}$ seja contínua.

B. $c = \frac{3}{2}$

C. $c = \frac{1}{2}$

D. $c = -\frac{3}{2}$

28 A derivada de uma parábola, gera uma:

A. Reta paralela ao eixo x

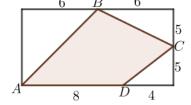
C. Uma reta

B. Reta paralela ao eixo y

D. Nenhuma das alternativas anteriores

A primeira derivada de $y = \frac{\sin x - 1}{\cos x + 1}$ 29

A. $\frac{\cos x - \sin x + 1}{(\cos x + 1)^2}$ B. $\frac{\cos^2 x + \cos x - \sin^2 x - \sin x}{(\cos x + 1)^2}$ C. $\frac{\cos x - \sin x - 1}{(\cos x + 1)^2}$


- Seja $\mathbb{R}\setminus\{0\}=\{x\in\mathbb{R}:x\neq0\}$. O ponto de inflexão do gráfico da função $g(x):\mathbb{R}\setminus\{0\}\longrightarrow\mathbb{R}$ definida por $g(x) = 4x^2 + \frac{1}{x}$ ocorre para x igual a:
- **B.** $-\sqrt[3]{4}$
- *C*. ln 8
- D. -2
- A recta que passa pelos pontos (0,3) e (5,0) também passa pelo ponto: 31
 - *A*. (5, 3)
- **B.** (3,5)
- C. (10, -3)
- Ache o centro C e o raio r da circunferência de equação $2x^2 + 2y^2 + 16x 32y + 134 = 0$ 32
 - A. C(4, -8) e $r = \sqrt{67}$

C. C(8, -16) e $r = \sqrt{186}$

B. C(-4,8) e $r = \sqrt{13}$

- **D.** C(1, -2) e r = 186
- O produto (2 + ki)(2 + i) é um numero imaginário puro para k igual a: 33
- **B.** k = -4
- *C.* k = -3
- **D.** k = 4

- A área do polígono ABCD é igual a: 34
 - **A.** 55
- **B.** 65
- **C.** 90
- **D.** 120

- O conjunto solução da inequação $\frac{x}{3} \frac{x+1}{2} > \frac{2x}{4} + \frac{1}{3}$ é: 35
 - A. $]-\infty; -\frac{5}{4}[$ B. $[-\frac{5}{2}; +\infty[$ C. $]\frac{10}{3}; +\infty[$
- **D.** $]-\infty;\frac{10}{3}]$
- Com relação a função $f(x) = \left(\frac{1}{2}\right)^x$ podemos afirmar que : 36
 - A. é crescente em todo domínio
- C. é decrescente em todo domínio
- B. o gráfico intercepta o eixo das abcissas
- *D.* é decrescente somente em $[0, +\infty]$

- Se xy = 7, o valor de $\frac{2^{(x+y)^2}}{2^{(x-y)^2}}$ é: 37
 - A. 2^{7}

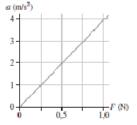
- $B. 2^{28}$
- $C. 2^{14}$
- D. 2¹⁹⁶

- Simplificando a fracção $\frac{a^4 + b^4 6a^2b^2}{a^2 b^2 + 2ab}$, obtem-se: 38
 - A. $b^2 a^2 2ab$
- **B.** $a^2 b^2 + 2ab$
- C. $a^2 b^2 2ab$
- **D.** $b^2 a^2 + 2ab$
- Sabendo-se que $5^k = 2$, pode-se concluir que $\log_2 100$ é igual a: 39
 - A. $\frac{2}{k}$

- **B.** $2 + k^2$
- *C*. 2 + 2k
- D. $\frac{2+2k}{k}$
- Se $A = \{3n \mid n \in \mathbb{N}\}\$ e $B = \{n \in \mathbb{N} \mid n \text{ \'e divisor de } 120\}$, quantos elementos possui $A \cap B$? 40
 - **A.** 20

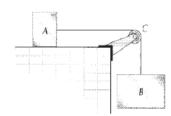
- **B.** 10
- *C*. 8
- D. 2

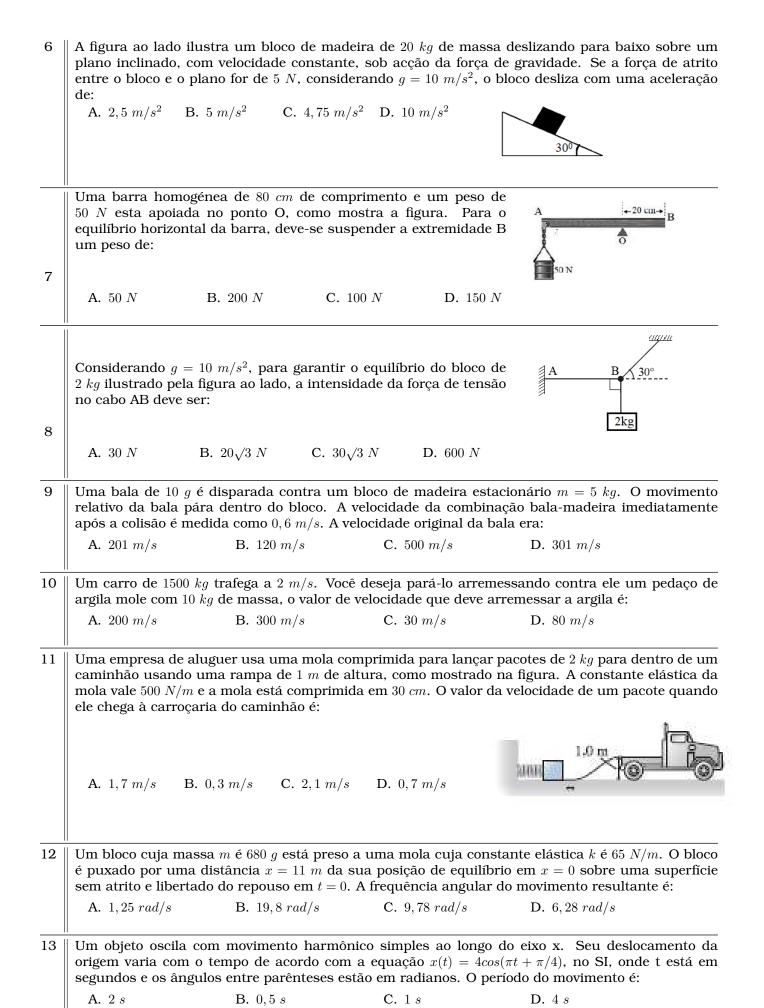
Instituto Superior Politécnico de Songo


Comissão de Gestão de Exames de Admissão

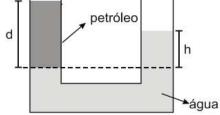
ANO 2025			
Disciplina:	Física	Número de questões	40
Duração:	120 minutos	Opções por questão:	4

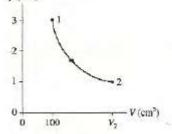
INSTRUÇÕES


- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi atribuída no inicio deste exame. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- Na FOLHA DE RESPOSTAS, assinale a letra que corresponde a alternativa correta, colocando uma cruz "×" sobre a circunferência "()" correspondente.
- 1 Um móvel parte da posição 1 a 50 km, indo até posição 2 a 60 km, onde, mudando o sentido do movimento, vai até posição 3 a 32 km. O deslocamento escalar e a distância efetivamente percorrida são, respectivamente:
 - A. 28 km e 28 km
- B. 18 km e 38 km
- C. $-18 \ km \ e \ 38 \ km$
- D. 38 km e 18 km.
- Uma pedra é atirada verticalmente para cima, do topo de um edifício de 50 m de altura, com uma velocidade de 20 m/s. Desprezando a resistência do ar, a altura máxima e o tempo em que a pedra retorna à altura da qual foi atirada são respectivamente:
 - A. 70,4 m e 4,08 s
- B. -20, 4 m e 4, 08 s
- C. 12 m e 8, 16 s
- D. 4,08 m e 2,27 s
- 3 Duas forças, F_1 e F_2 , actuam sobre um pequeno corpo. F_1 é vertical, para baixo e vale 8 N, enquanto F_2 é horizontal, para direita e vale 6 N. O módulo da resultante destas duas forças é:
 - **A.** 2,5 *N*
- B. 5 N
- C. 7,5 N
- D. 10 N


Um objecto sofre uma aceleração devido a acção de uma força. A figura ao lado mostra o gráfico da aceleração versus força para esse objecto. Com base no gráfico conclue-se que a massa desse objecto é:

4


- **A.** 0, 25 kg
- B. 0,125 kg
- C. 1 kg
- D. 4 kg
- 5 Dois corpos A e B de massas $m_A = 1 kg$ e $m_B = 2 kg$ estão ligados por uma corda de peso desprezível, que passa sem atrito pela polia C. Entre A e o apoio existe atrito de coeficiente $\mu=0,5$. Adoptando $g = 10 \ m/s^2$, a aceleração dos corpos é:
- A. $2,5 \ m/s^2$ B. $5 \ m/s^2$ C. $1,5 \ m/s^2$ D. $3 \ m/s^2$



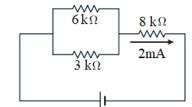
14	As antenas das emissoras de rádio emitem ondas electromagnéticas que se propagam na atmosfera
	com a velocidade da luz (3·10^8 m/s) e com frequências que variam de uma estação para a outra. Uma
	dada emissora da praça emite uma onda na frequência de $90~MHz$ que corresponde ao comprimento
	de:

- **A.** 9,3 *m*
- B. 3,9 m
- C. 1,1 m
- D. 3,3 m
- Um submarino de pesquisa possui uma janela de 20 cm de diâmetro e 8 cm de espessura. O 15 fabricante alega que a janela pode suportar forças de até $1\times 10^6~N$. A pressão no interior do submarino é mantida em 1 atm. A profundidade máxima de segurança do submarino é:
 - **A.** 1,6 km
- B. 3, 2 km
- C. 1,6 m
- D. 3, 2 m
- 16 A figura ao lado ilustra um aparelho utilizado para calcular a densidade do petróleo. Sabendo que a densidade da água é igual a $1000~kg/m^3$, h=4~cm e d=5~cm, pode-se afirmar que a densidade do petróleo é:
 - **A.** $200 \ kg/m^3$
- C. $800 \ kg/m^3$
- B. $500 \ kg/m^3$
- D. $5000 \ kg/m^3$

- Com uma prensa hidráulica levanta-se um carro de massa $1000\ kg$ num local onde a aceleração 17 de gravidade vale $g=10~m/s^2$. Sabendo que o êmbolo maior tem uma área de $2000~cm^2$ e o menor $10 \ cm^2$, a força necessária para manter o carro erguido é:
 - **A.** 150 N
- B. 100 N
- **C.** 50 N
- D. 200 N
- Um líquido suposto incompressível, escoa através de uma mangueira cilíndrica de raio r e enche 18 um recipiente de volume V em intervalo de tempo t. A velocidade de escoamento do líquido suposto constante, tem módulo igual a:
 - A. $\frac{V}{\pi r^2 t}$
- B. $\frac{V}{2\pi rt}$
- C. $\frac{V\pi r^2}{t}$
- D. $V\pi r^2 t$
- 19 Uma amostra de 0,004 mol de gás é submetida ao processo mostrado na figura ao lado, o volume final V_2 deste gás será:
 - A. $50 \ cm^3$
- B. 300 cm^3 C. 150 cm^3
- D. $600 \ cm^3$

- Um gás perfeito ocupa, a temperatura de 250 K, um volume de 200 cm³. Se a pressão for mantida 20 constante e o volume passar para $300 cm^3$, a temperatura será igual a:
 - **A.** 150 K
- B. 75 K
- C. 375 K
- D. 225 K
- Uma dada massa de gás perfeito está contida em um recipiente de capacidade $12\ litros$, sob pressão 21 de 4 atm e temperatura de 27 °C. Ao sofrer uma transformação isocórica sua pressão passa a 8 atm. Nesse novo estado a temperatura do gás, em °C, vale:
 - **A.** 13, 5
- B. 27
- C. 127
- D. 54
- Numa transformação isobárica, um gás realiza o trabalho de 350~J, quando recebe do meio externo 22 um calor de 750 J. Nessa transformação, a variação de energia interna do gás é de:
 - A. 200 J
- B. 300 J
- C. 400 J
- D. 1100 J

23	O trabalho, feito por um sistema durante um processo onde água líquida a $100^0~C$ é convertido em vapor por ebulição à pressão atmosférica padrão (1 atm) em que o volume dessa água muda de um valor inicial de $1 \cdot 10^{-3}~m^3$ como um líquido para $1,671~m^3$ como vapor, é:			
	A. 120 <i>kJ</i>	B. $150 \ kJ$	C. $370 \ kJ$	D. 169 kJ
$\overline{24}$	Uma amostra de $1,0\ mol$ de um gás ideal é mantida a 0^0C durante uma expansão de $3\ L$ para $10\ L$. A quantidade de energia transferida por calor que ocorre com o ambiente nesse processo é:			
	A. 2500 <i>kJ</i>	B. $1500 J$	C. 2700 J	D. $1000 \ kJ$
 25	Duas cargas eléctricas pontuais distam $20\ cm$ uma da outra. Alterando essa distância, a intensidade da força de interação electrostática entre as cargas fica 4 vezes menor. A nova distância entre elas é:			
	A. 10 cm	B. 40 cm	C. 20 cm	D. 30 cm
26	De um corpo eletrizado inicialmente com carga $Q_i=-10~\mu C$ foram retirados $50\cdot 10^{12}$ elétrons. A sua carga final é:			
	A. $-8 \ \mu C$	B. $-2 \mu C$	C. $-10 \ \mu C$	D. $-6 \mu C$
27	O campo elétrico em um ponto distante $50\ mm$ de uma carga Q , no vácuo, é convergente e vale $450\ N/C$. A carga geradora deste campo elétrico é:			
	A. $75 \ \mu C$	B. $105 \mu C$	C. $125 \mu C$	D. $55 \mu C$
28	Uma carga elétrica $Q=+4~\mu C$ encontra-se no vácuo. Considerando $k=9\cdot 10^9~Nm^2C^{-2}$, a intensidade do campo elétrico num ponto situado a $d=2~m$ dessa carga é:			
	A. $1, 8 \cdot 10^3 \ N/C$	B. $5 \cdot 10^3 \ N/C$	C. $9 \cdot 10^3 \ N/C$	D. $2, 5 \cdot 10^3 \ N/C$
29	de $44~J$ é realizad		0,2 C que passa, atra	dencia. Verifica-se que um trabalho vés da lâmpada, de um terminal a da tomada é: D. $220\ V$
30	Na figura ao lado o valor da carga é $Q=2~\mu C$. Supondo que as distâncias da carga Q aos pontos A			
	e B que estão na		$= 20 \ cm \ e \ r_B = 60 \ cm.$	Considerando $k = 9 \cdot 10^9 \ Nm^2C^{-2}$ a
	A. 9 · 10 ⁴ V I	3. $3 \cdot 10^4 V$ C. $6 \cdot 10^4$	V D. $2 \cdot 10^4 V$	В
31	Uma diferença de potencial de $1,5~V$ é estabelecida através de um fio de nicromo de $200~cm$ de comprimento e $1,0~mm$ de diâmetro quando o mesmo é conectado aos terminais de uma bateria de $1,5~V$. Considerando a resistividade do nicromo $\rho=1,5\cdot 10^{-6}\Omega m$ a corrente no fio é:			
	A. 1,3 <i>A</i>	B. $0,85 A$	C. 1,7 A	D. 0,39 A
32	O circuito representado pela figura ao lado contém 6 resistências de valores $R_1=40~\Omega, R_2=60~\Omega,$ $R_3=24~\Omega,~R_4=18~\Omega,~R_5=20~\Omega$ e $R_6=5~\Omega.$ A resistência equivalente entre A e B do circuito representado pela figura é:			
	Α. 24 Ω	3. 34 Ω C. 12 Ω	D. 4 Ω	A
33		, uma carga de $3600~\mu C$ corrente elétrica neste fi		atravessar a sua seção transversal,
	A. 360 μA	B. $50 \mu A$	C. $300 \ \mu A$	D. $20 \mu A$

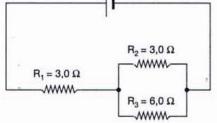

No circuito representado pela figura ao lado foi medida a corrente na resistência de $8\,k\Omega$ e obteve-se o valor de 2 mA. Com esses dados, a ddp na resistência de $8 k\Omega$ e o valor da f.e.m são, respectivamente:

A. 18 *V* **e** 20 *V*

C. 18 V e 12 V

B. 16 *V* e 20 *V*

D. 16 V e 12 V


35 No circuito representado pela figura ao lado é aplicada uma voltagem de 1,5 V entre os pólos de uma pilha. A corrente que a pilha está fornecendo ao circuito é

A. 0, 3 *A*

B. 1, 2 A

C. 3, 0 A

D. 0,9 A

36 Uma bomba de água é ligada a uma tomada que lhe aplica uma voltagem de 120~V. Sabe-se que em funcionamento, o motor da bomba é percorrido por uma corrente i = 2, 5 A. Se a bomba funcionar durante 10 minutos, a quantidade de energia que será desenvolvida nesta bomba em kWh é:

A. 0.10 kWh

B. 0.02 kWh

C. $0.05 \ kWh$

D. $0,25 \ kWh$

37 Um protão movendo-se a $4\cdot 10^6~m/s$ através de um campo magnético de 1,7~T experimenta uma força magnética de magnitude $8,2\cdot 10^{-13}~N$. O ângulo entre a velocidade do protão e o campo é:

A. 17.5^{0}

B. 48.9 ⁰

C. 37^{0}

D. 90^{-0}

Um fio de 2,8~m de comprimento conduz uma corrente de 5~A em uma região onde um campo 38 magnético uniforme tem uma magnitude de 0,39 T. A magnitude da força magnética no fio se o ângulo entre o campo magnético e a corrente for 60 ⁰ é:

A. 4,73 N

B. 5,46 N

C. 2,34 N

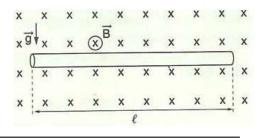
D. 18,4 N

39 Uma pequena barra magnética é suspensa em um campo magnético uniforme de 0,25~T. O torque máximo experimentado pela barra magnética é $4,6\cdot 10^{-3}~N.m.$ O momento magnético da barra magnética, no SI, é:

A. $1.84 \cdot 10^{-2}$

B. $1,07 \cdot 10^{-2}$ C. $2,05 \cdot 10^{-2}$

D. $2,81 \cdot 10^{-2}$


40 Um segmento de condutor recto e horizontal, tendo comprimento l=20~cm e massa m=60~g, percorrido por corrente $i=3\ A$, apresenta-se em equilibrio sob as ações exclusivas da gravidade g e de um campo magnético horizontal. Adoptando $g = 10 \ m/s^2$, a intensidade de campo é:

A. 4.0 T

B. 3.0 T

C. 1.0 T

D. 5.0 T

FIM!